HD1 Cylinders

Cylinders For Abusive Conditions

Combining NFPA dimensional interchangeability and high quality components, the "HD1" Series offers excellent performance and long service life, even in the most severe of conditions.

External Bearing Ensures Smooth Motion

HD1 cylinders are fitted with a heavy-duty external rod bearing in the rod end head. Teflon[®]-impregnated and hardcoat anodized, this bearing ensures smooth rod motion while maintaining rod rigidity and stability. The entire rod gland and bearing may be quickly removed and replaced without disassembling the cylinder.

Operating Specifications								
Temperature Range:	-40°F to +250°F (to +400°F on request)							
Lubrication:	For maximum cylinder life, non-detergent							
	petroleum based oil is recommended.							
	Non-lube seals avail.							
Filtration:	Not essential, but a standard 40 micron filter placed							
	upstream will prolong seal life.							

Operating Parameters

Bore Diam.	Thrust*	Thrust Mult.**	Rod Diam.	Max. Oper. Air	Pressure Oil [‡]
1 ¹ / ₂ ″	177	1.77	⁵ / ₈ " or 1"	250	1000
2″	314	3.14	⁵ / ₈ ″ or 1″	250	1000
2 ¹ / ₂ "	491	4.91	⁵ / ₈ ″ or 1″	250	1000
3 ¹ /4″	830	8.30	1" or 1 ³ / ₈ "	250	700
4″	1257	12.57	1" or 1 ³ / ₈ "	250	650
6″	2827	28.27	1 ³ / ₈ " or 1 ³ / ₄ "	250	435

*Pushing force of cylinder at 100 PSI inlet pressure. Pulling force will be about 10% less due to the displacement of the piston rod. Note: Actual realizable thrust could be somewhat lower due to side loading and internal friction. It is best to oversize you cylinder by about 25% to assure smooth operation.

**To determine cylinder thrust at other inlet pressures, multiply this factor times the desired inlet pressure.

‡HD1 Cylinders are not rate or approved for use in a hydraulic circuit where an impulse or pressure spike may occur.

Cylinder Construction

Rod Bearing:

Teflon-impregnated, hardcoated aluminum

Heads:

Machined from solid aluminum bar; black anodized

Tubes:

Aluminum hard anodized to 60 Rc (16 RMS finish)

Piston:

Solid high alloy aluminum and fitted with a PTFE Wear Band.*

Piston Rod:

High tensile ground and polished hard chrome plated steel

Piston and Rod Seals:

Wear compensating Buna N vee rings. Non-lube seals are also available (see Option NL).

Tube Seals: Buna N o-rings

Rod Wiper Dupont Teflon[®]

Tie Rods: High tensile steel torqued to allow for flexure.

NOTE: 6" Bore Cylinders do not have wear bands. (HD)

Customize Your Cylinder

The HD1 Series offers numerous accessories and design options. With hundreds of possible combinations available, you can "design" your own cylinder for any application.

Cushions (CR, CF, CB)

For end-of-stroke load deceleration, specify cushions in either or both ends of your cylinder. Cushions decelerate the piston rod over the last $^{11}/_{16}$ " of stroke. Adjustable, they allow you to set the degree of cushioning needed for each specific application.

A built-in check valve assures a fast getaway in the opposite direction. A pre-lubricated nitrile cushion seal provides years of reliable service.

Note: Cushions are not recommended on hydraulic cylinders.

Double Rod (DR)

Double rod cylinders have a common piston rod that protrudes from both ends of the cylinder. In addition to providing a dual power source, double rod cylinders serve to minimize rod deflection and to facilitate the control and adjustment of rod travel.

Inter-Pilots® (IP)

Mead's Inter-Pilot[®] is a miniature 3-way valve built in the cylinder head. Actuated by the cylinder's piston as it reaches the end of its stroke, the valve emits an air signal. Thus, sequencing is achieved without external limit switches and electric wiring.

Inter-Pilots may be built into either or both cylinder heads. They are not for hydraulic use. Cylinder operating pressure must not exceed pressure used to feed the Inter-Pilot^{$^{\circ}$}.

 $INTER-PILOT^*$ PORT LOCATIONS (Port Size = 10-32) Inter-Pilot port location style that is offered with each cylinder head

Non-Rotating Rod (NR)

For prevention of piston and rod rotation, an internal rod is embedded internally into both cylinder heads. This rod also passes through the piston and acts as a linear guide for the piston. Note: NR option available on $3^{1/4''}$, 4" and 6" bore cylinders only.

Viton[™] Seals (VI)

For high temperature environments, Viton[™] seals can be specified to replace standard Buna N seals. While HD1 cylinders are normally rated to 250°F, cylinders with Viton seals are rated to 400°F.

Low Breakaway Option (NL)

HD1 Cylinders

For non-lube service, polyurethane seals replace standard piston and rod seals. These specially formulated seals have an inherent lubricity that provides low breakaway between the piston and tube. Note: NL seals are not available on hydraulic cylinders.

Magnetic Piston (MP)

If you will be using either Hall Effect or Reed switches for sensing rod position, you will need to order your cylinder with a magnetic piston.

Mead's Hall Effect and Reed switches allow the cylinder user to sense rod position anywhere within the stroke. They emit an electrical signal when the magnetized piston reaches a point opposite their location. Tie rod mounting facilitates fast and accurate position setting.

Oversized Rod (OR)

Available on all models; the HD1-150, 200 and 250, you can order a 1" rod diameter rather than the standard $\frac{5}{8}$ " diameter; the HD1-325 and HD1-400 with a $1-\frac{3}{8}$ " rather than the standard 1"; the HD1-600 with a $1-\frac{3}{4}$ " rather than the standard $1-\frac{3}{8}$ ".

Accessories

Pneumatic Stroke Completion Sensors (SCS)

Port mounted SCS valves emit an air signal when the cylinder rod has stopped even if the piston has not contacted the end cap. Ideal for use in situations where the full cylinder stroke is not used. See pg. 57.

Self Aligning Rod Couplers

Rod couplers simplify cylinder alignment problems by compensating for 2° angular error and $1/_{16}''$ lateral misalignment on both extension and retraction strokes. Greater reliability is achieved by reducing cylinder and component wear. All components are heat treated for wear and corrosion resistance.

* see page 30 for complete listing of Mead's self aligning rod couplers.

Flow Control Valves

Dyla-Trol[®] - For unprecedented smoothness in cylinder speed control, use Mead's Dyla-Trol[®] valves with a perfectly tapering flow. Where needle type flow controls generate turbulence as they close, Dyla-Trol maintains an even 360 laminar flow regardless of the setting. Pg. 59.

Right Angle Flow Controls (RAF) - RAF flow controls feature push-in-fittings, pre-applied Teflon[®] based thread sealant, a recessed screw driver adjustment and convenient swivel for ease of tubing alignment. See page 66.

Cylinders

Order HD1 Cylinder

Select A Bore Size									
Bore	1 ¹ /2″	2″	2 ¹ /2″	3 ¹ /4″	4″	6″			
Force*	177	314	491	830	1257	2827			
Model	HD1-150	HD1-200	HD1-250	HD1-325	HD1-400	HD-600			

* Maximum force output (lbs.) at 100 PSI inlet pressure

STEP 2:

Choose Stroke Length										
PISTON ROD DIAMETERS:										
Bore Diam.	1 ¹ /2″	2″	2 ¹ /2″	3 ¹ /4″	4″	6″				
Rod Diam.	⁵ / ₈ ″ or 1″	⁵ / ₈ " or 1"	⁵ /8″ or 1″	1" or 1 ³ / ₈ "	1" or 1 ³ / ₈ "	$1\frac{3}{8}$ or $1\frac{3}{4}$				

Non-Standard Piston Rods: Special rod threads or extensions are available. Please enclose a sketch of what you require.

STER	? 3:	Select A	Mount	ing St	yle					
		Mead			Bore D	Diameter			NFPA	Description
		Code	1 ¹ /2″	2″	2 ¹ /2″		3 ¹ /4″	4″6″	Code	Description
Flush Bottom/Front Rear		FB	•	•	•	•	•	•	MS-4	Four tapped holes in bottom and in both cylinder faces (front and rear). Rear sleeve nuts standard.
Long Clevis		РВ	•	•	•	•	•	•	MP-2	Two ears extend from rear head (clevis is detachable).
Short Clevis		PF	•	•	•	•	•	NA	MP-1	Two ears extend from rear head (clevis is detachable).
Pivot		PE	•	•	•	•	•	NA	MP-4	A single ear extends from rear head (pivot is detachable).
Tie Rods Ext. Front		TIF	•	•	•	•	•	•	MX-3	All four tie-rods extend forward from cylinder face. Consult factory for rear extended tie-rods (or both ends).
Front Flange NFPA Std.		FH	•	•	•	•	•	•	MF-1	Flange plate extends beyond the thicker front head.
Rear Flange		FR	•	•	•	•	•	•	MF-2	Flange plate extends beyond the rear head.
Trunnion Front		TF	•	•	•	•	•	•	MT-1	Two pivot bars extend from two sides of front head.; not available with front Inter-Pilots [®] or front cushions.
Trunnion Rear		TR	•	•	•	•	•	•	MT-2	Two pivot bars extend from two sides of rear head. Not available with rear Inter-Pilots [®] or rear cushions.
Foot		FT	•	•	•	•	•	•	Non Std.	A plate with two holes is mounted to the bottom of each head.

Order HD1 Cylinders

STEP	P 4:	Select Cyl	inder C	Options					
		Mead			Bore D	iameter			
		Code	1 ¹ /2″	2″	2 ¹ /2″	3 ¹ /4″	4″	6″	Description
Double Rod		DR	•	•	•	•	•	•	Rod extends through both heads (adds to cylinder rigidity)
Oversized Rod		OR	●*	•	•	•	•	•	Standard rod is replaced by larger di- ameter rod.
Cushions (Not available with Trunnion)		Front (CF) Rear (CR) Both (CB)	●*	•	•	•	•	•	Dampen the impact and sound that occur at stroke completion; Adjustable; Note: Not available on hydraulic cylinders.
Inter-Pilots [®] (Not available with Trunnion)		Front (IPF) Rear (IPR) Both (IPB)	•	•	•	•	•	•	Inter-Pilots [®] emit an air signal at the end of each stroke; Integral with cylinder head; Note: Not available on hydraulic cylinders.
Non-Rotating Rod (6 [″] Max.Stroke)		NR	NA	NA	NA	•	•	•	Internal bar prevents piston and rod rotation.
Non-Lube Seals		NL	•	•	•	•	•	NA	Self-Lubricating seals are used in place of standard Buna N seals; Note: Not available on hydraulic cylinders.
High Temp. Seals	нот	VI	•	•	•	•	•	NA	Viton seals are suitable for high tem- perature environments (400°F Max.)
Magnetic Pistons		МР	•	•	•	•	•	•	Enables Reed & Hall Effect switches to sense piston. Note: Reed switch/Hall Effect not available on all hydraulic cylinders. (Contact Mead)
* Cushions or Inter-Pilots [®] are not available on the rod end head of 11/2" bore cylinders with oversized rod.									
STEP	P 5:	Build A M	odel N	umber					
When ordering Dune motion		Base Model	ę	Stroke	Mounti Style	ing Opt e	ions		Hall Effect Switches
When ordering Dyna-mation cylinders, list the:		<u>HD1-200</u>		<u>10</u> -	<u>PB</u>	- <u>C</u>	E		Model CS-6200P Sourcing Model CS-6200N

1. Base Model

2. Stroke

3. Mounting Style

4. Options (If Needed)

Accessor	ies							
	Bore Diameter:	Rod Size	1 ¹ /2″	2″	2 ¹ /2″	31/4″	4″	6″
	Flex Rod	STD	DMA-437	DMA-437	DMA-437	DMA-750	DMA-750	DMA-1000
┟╁╌┙╞┛╙╨╜	Couplers	OR	DMA-750	DMA-750	DMA-750	DMA-1000	DMA-1000	DMA-1250
	Forged	STD	DMC-1	DMC-1	DMC-1	NΔ	NΔ	NΔ
	Rod Clevis	OR	NA	NA	NA	114	112	
E	Rod Clevis	STD	DMC-2	DMC-2	DMC-2	DMC-4	DMC-4	DMC-6
	(NFPA Std.)	OR	DMC-4	DMC-4	DMC-4	DMC-6	DMC-6	DMC-7
	Machined	STD	DME-1	DME-1	DME-1	DME-2	DME-2	DME-3
<u></u>	(NFPA Std.)	OR	DME-2	DME-2	DME-2	DME-3	DME-3	DME-7
	Pivot Bracket Kit	ALL	HD40-150	HD40-200	HD40-250	HD40-325	HD40-400	DMP-8 Bracket Only
- ARD	Short Clevis (with Pin)	ALL	HD35S- 150	HD35S- 200	HD35S- 250	HD35S- 325	HD35S- 400	NA
Clevis Bracket Mounting Kits	Long Clevis (with Pin)	ALL	HD35- 150	HD35- 200	HD35- 250	HD35- 325	HD35- 400	DMR-8 Bracket Only
Flange Mount (for front* or i	ing Kits rear flanges)	ALL	HD45- 150	HD45- 200	HD45- 250	HD45- 325	HD45 400	NA

NOTE: All Kits include mounting hardware; for DMC-1 Dimensions see page 37; all others see page 45.

2" Bore ____

10" Stroke

Clevis Mount (PB)

Cushioned Front (CF)

Model CS-6200N Sinking

Cylinders must have a magnetic piston (MP). For technical information, see page 33.

Reed Switches

Model CS-6200R Wire Leads

Cylinders must have a magnetic piston (MP). For technical information, see page 33.

Special Cylinders

We invite inquiries regarding non-standard cylinders. Please call 773-685-6800 or your local Mead representative.

HD1 Dimensions

Basic Cylinder

NFPA: MXO

NFPA: MDXO

• EE Dimension is NPTF

* 6" bore HD cylinders have a rear tie rod nut, shown below as the "K" dimension. K = $\frac{1}{16}$ "

	MM																					
BORE	ROD	Α	В	С	D	E	EE	F	G	J	K	КК	LAF	LB	LD	Р	R	WF	Y	ZS	ZM	RD
1 ¹ / ₂	5/8	3/4	1 ¹ / ₈	³ /8	1/2	2	1/.	3/0	17/	15/		⁷ / ₁₆₋ 20	1 ³ /4	3 5%	1 ¹ /2	2 ¹ /.	17/10	1	1 ¹⁵ / ₁₆	1 ¹ / ₄	6 ¹ /8	1 ¹ / ₆
	1	1 1//8	1 ¹ / ₂	⁵ /8	7/8	2	/4	/8	I /16	/16		³ /4-16	2 ¹ / ₂	0 /8	4 /8	Z /4	1 / 16	1 ³ /8	2 ⁵ / ₁₆	1 /4	6 ¹ /2	1 /8
2	5/8	3/4	1 1/8	³ /8	1/2	2 1/2	1/,	3/8	17/10	15/10	-	⁷ / ₁₆₋ 20	1 ³ /4	2 5/	4 1/-	21/4	127/	1	1 ¹⁵ / ₁₆	11/.	6 ¹ /8	11/2
2	1	1 ¹ / ₈	1 ¹ / ₂	⁵ /8	⁷ /8	Z /2	74	/-	1 / 16	/16		³ /4-16	2 ¹ / ₂	3 /8	4 /8	∠ /4	I /32	1 ³ /8	2 ⁵ / ₁₆	1 /4	6 ¹ / ₂	1 /8
2 ¹ / ₂	5/8	3/4	1 ¹ / ₈	³ /8	1/2	2	1/	3/.	17/10	15/10		⁷ / ₁₆₋ 20	1 ³ /4	2 3/,	4 1/.	2 ³ /2	2 ³ /10	1	1 ¹⁵ / ₁₆	13/2	6 ¹ /4	11/2
∠ /2	1	1 1//8	1 ¹ / ₂	⁵ /8	7/8	3	/4	/8	I /16	/10	-	³ /4-16	2 ¹ / ₂	5 /4	4 /4	2 /8	2 / 10	1 ³ /8	2 ⁵ / ₁₆	1 /8	6 ⁵ /8	1 /2
3 ¹ / ₄	1	1 1//8	1 ¹ / ₂	³ /8	⁷ /8	2 3/.	1/	5/.	111/.	13/		³ /4-16	2 ¹ / ₂	41/	43/	of /	02/	1 ³ /8	2 ⁷ / ₁₆	13/	7 ¹ / ₂	43/
- / .	1 ³/s	15/8	2	1/2	1 1/8	5 /4	12	/8	I /16	1 /16	-	1-14	3 ¹ /4	4 /2	4 °/4	2 ³ /8	23/4	1 ⁵ /8	2 ¹¹ / ₁₆	1°/8	7 ³ /4	1°/4
4	1	1 1/8	1 ¹ / ₂	1/2	7/8	11/2	1/2	5/0	1 ¹¹ / ₁₀	1 ³ / ₁₆		³ /4-16	2 ¹ / ₂	41/	42/	of /	n ²¹ /	1 ³ /8	2 ⁷ / ₁₆	13/	7 ¹ / ₂	13/.
	1³/8	1 ⁵ /8	2	⁵ /8	1 1//8	- /2	/2	/8	1 /10	1 / 10		1-14	3 ¹ /4	4 /2	4 ³ / ₄	2 ³ /8	3 /64	1 ⁵ /8	2 ¹¹ / ₁₆	1 /8	7 ³ /4	1 /4
6	1 ³/8	1 ⁵ /8	2	⁵ /8	1 1/8	G 1/	3/.	3/	2	11/	7/10	1-14	3 ¹ /4	5	Б ¹ /а	21/2	4 ⁷ /₀	1 ⁵ /8	2 ¹³ / ₁₆	11/	8 ³ / ₄	2
	1 ³ /4	2	2 ³ / ₈	³ /4	1 ¹ / ₂	U ⁻ /2	/4	/4	2	1 /2	/16	1 ¹ / ₄ -12	3 7/8	5	J /2	J /8	-1 /0	17/8	3 ¹ / ₁₆	1 72	9	2

Rear, Front & Bottom Tapped (FB)

NFPA Code: MS4

Double Rod

BORE	MM ROD DIA.	NT	RT	тк	TN	SN	хт
1 1/2	⁵ /8 1	¹ /4-20	¹ /4-28	³ /8	⁵ /8	2 ¹ / ₄	1 ¹⁵ /16 2 ⁵ /16
2	⁵ /8	⁵ /16- 18	⁵ / ₁₆₋ 24	1/2	7/8	2 ¹ / ₄	1 ¹⁵ /16 2 ⁵ /16
2 ¹ / ₂	⁵ /8 1	³ /8-16	⁵ / ₁₆₋ 24	⁹ /16	1 ¹ / ₄	2 ³ / ₈	1 ¹⁵ /16 2 ⁵ /16
31/4	1 1³/₀	¹ /2-13	³ /8- 24	3/4	1 ¹ / ₂	2 ⁵ / ₈	2 ⁷ / ₁₆ 2 ¹¹ / ₁₆
4	1 1 ³ /8	¹ /2- 13	³ /8- 24	3/4	2 ¹ / ₁₆	2 ⁵ / ₈	2 ⁷ / ₁₆ 2 ¹¹ / ₁₆
6	1 ³ /8 1 ³ /4	³ /4-10	¹ /2- 20	1 1/8	31/4	31/8	2 ¹³ / ₁₆ 3 ³ / ₁₆

HD1 Dimensions

Cylinders

1/2

⁵/8

⁵/8

3/4

1¹/8

17/8

17/8

2¹/₄ Clevis

3/4

1¹/₄

11/4

 $^{1}/_{2}$

³/4

3/4

1

5/8

1

1

1³/8

1

1³/8

1³/8

1³/4

3/4

1¹/₄

1¹/₄

 $1^{1}/_{2}$

2¹/₂

3¹/₄

4

6

57/8

6¹/₄

7¹/₂

5³/4

7¹/₂

7³/₄

87/8

9¹/₈

5¹/₂

57/8

67/8

7¹/₈

67/8

7¹/₈

NA

 $^{1}/_{2}$

³/4

3/4

1¹/₈ Clevis

HD1 Dimensions

Back End (TIR)

BORE	MM ROD DIA.	AA	BB	АВ	BF	DD	R	ZJ
1 ¹ / ₂	⁵ /8 1	2.02	1	1 ⁵ /16	1 ³/ ₈	1/4-28	17/16	4 ⁵ /8
2	⁵ /8 1	2.6	1 ¹ /8	1 ⁵ / ₁₆	1 ¹ / ₂	⁵ / ₁₆ -24	1 ²⁷ / ₃₂	4 ⁵ /8
2 ¹ / ₂	⁵ /8 1	3.1	1 1/8	1 ³ / ₄	1 ¹ / ₂	⁵ /16-24	2 ³ / ₁₆	4 ³ / ₄ 5 ¹ / ₈
31/4	1 1³/8	3.9	1 ³/ ₈	2 ¹ / ₃₂	2	³ /8-24	2 ³ / ₄	5⁵/s 5 ⁷ /s
4	1 1³/8	4.7	1 ³/8	2 ¹ / ₃₂	2	³ /8-24	3 ²¹ / ₆₄	5 ⁵ /8 5 ⁷ /8
6	1 ³ /8 1 ³ /4	6.9	1 ¹³ / ₁₆	2 ⁵ / ₁₆	2 ⁹ / ₁₆	¹ / ₂ -20	47/8	6 ⁵ /8 6 ⁷ /8

Front Trunnion (TF)

NFPA: MT1

ψ

Rear Trunnion

NFPA: MT2

	мм					
BORE	ROD DIA.	TD±.001	TL	UT	XG	XJ
1 1/a	⁵ /8	1	1	Л	1 ³ / ₄	4 ¹ / ₈
1 /2	1	ľ		-	2 ¹ / ₈	4 ¹ / ₂
2	⁵ /8	1	1	4 1/	1 ³ / ₄	4 ¹ / ₈
2	1	I	1	4 /2	2 ¹ / ₈	4 ¹ / ₂
21/	⁵ /8		1	F	1 ³ / ₄	4 ¹ / ₄
∠ '/2	1	I	I	5	2 ¹ / ₈	4 ⁵ / ₈
21/	1	1	1	E3/	2 ¹ / ₄	5
374	1³/8	I	1	3 -74	2 ¹ / ₂	5 ¹ /4
4	1		1	61/	2 ¹ / ₄	5
4	1³/8	I	I	0 /2	2 ¹ / ₂	5 ¹ /4
6	1³/8	13/	13/	01/	2 ⁵ /8	5 ⁷ /8
0	1 ³ / ₄	17/8	I 78	9 /4	2 ⁷ /8	6 ¹ / ₈

Cylinders

HD1 Cylinder Dimensions

٠

CD

÷ 4

A

ī

Clevis Bracket

Pivot Bracket

-	-E-	1	DD
\$	÷.	Ŧ	
		+	
¢	\square	¢	
	св-	-	

BORE	СВ	CD	CW	DD	E	FL	м	R
1 ½	³ /4	1/2	1/2	17/64	2	1 ¹ / ₈	1/2	1 ⁷ / ₁₆
2	3/4	1/2	1/2	²³ / ₆₄	2 ¹ / ₂	1 1/8	1/2	1 ²⁷ / ₃₂
2 ¹ / ₂ , 2 ¹ / ₂ *	3/4	1/2	1/2	²³ / ₆₄	3	1 ¹ / ₈	1/2	2 ³ / ₁₆
31/4	1 ¹ / ₄	3/4	⁵ /8	⁷ / ₁₆	33/4	17/8	3/4	2 ³ / ₄
4	1 ¹ /4	3/4	⁵ /8	⁷ / ₁₆	4 ¹ / ₂	17/8	3/4	3 ²¹ / ₆₄
6	1 ¹ / ₂	1	3/4	¹⁷ / ₃₂ Clevis ²¹ / ₃₂ Pivot	6 ¹ / ₂ Clevis 4 ¹ / ₂ Pivot	2 ¹ / ₄	1 ¹ /8 Clevis 1 ¹ /4 Pivot	4 ⁷ / ₈

Part # Rod Clevis Rod Eye Rod Coupler	Cylinder	A	СА	СВ	CD	CE	cw	КК	н	НА	нв	нс	HD	HE
DMC-2 DME-1 DMA-437	HD1-150 HD1-200 HD1-250	3/4	1 1/2	3/4	1/2	1 1/2	1/2	⁷ / ₁₆₋ 20	1 ¹/₄	2	1/2	3/4	⁵ /8	1 1/8
DMC-4 DME-2 DMA-750	HD1-150 OR HD1-200 OR HD1-250 OR HD1-325 HD1-400	1 ¹ /s	2 ¹ / ₁₆	11⁄4	3/4	2 ³/8	⁵ /8	³ /4-16	1³/₄	2 ⁵ / ₁₆	5/16	1 ¹ /8	³¹ / ₃₂	1 ¹ / ₂
DMC-6 DME-3 DMA-1000	HD1-325 OR HD1-400 OR HD-600	15/8	2 ¹³ /16	1	1	3 ¹ / ₈	3/4	1-14	2 ¹ / ₂	2 ¹⁵ / ₁₆	1/2	1 ⁵/8	1³/8	2 ¹ / ₄
DMC-7 DME-7 DMA-1250	HD-600 OR	1⁵/ଃ	37/16	2	1³/8	4 ¹ / ₈	1	11/4-12	2 ¹ / ₂	2 ¹⁵ /16	1/2	1 ⁵ /8	1³/8	2 ¹ / ₄